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Abstract

Location-Based Services are often used to find proximal Points of Interest
(PoIs) – e.g., nearby restaurants and museums, police stations, hospi-
tals, etc. – in a plethora of applications. An important recently addressed
variant of the problem not only considers the distance/proximity aspect,
but also desires semantically diverse locations in the answer-set. For
instance, rather than picking several close-by attractions with similar
features – e.g., restaurants with similar menus; museums with similar
art exhibitions – a tourist may be more interested in a result set that
could potentially provide more diverse types of experiences, for as long
as they are within an acceptable distance from a given (current) location.
Towards that goal, in this work we propose a novel approach to efficiently
retrieve a path that will maximize the semantic diversity of the visited
PoIs that are within distance limits along a given road network. Our
approach allows to specify both a start and terminal location to return a
(non-necessarily shortest) path that maximizes diversity rather than only
minimizing travel cost, thus providing ample applications in tourist route
recommendation systems. We introduce a novel indexing structure – the
Diversity Aggregated R-tree, based on which we devise efficient algorithms
to generate the answer-set – i.e., the recommended locations among a
set of given PoIs – relying on a greedy searching strategy. Our experi-
mental evaluations conducted on real datasets demonstrate the benefits
of the proposed methodology over the baseline alternative approaches.
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1 Introduction

Since the late 1990s, many applications relying on Location-Based Services
(LBS) have targeted the search for Points of Interest (PoIs) – e.g., tourist
attractions and restaurants – in the vicinity of their users. Since traveling cost,
in terms of distance or travel-time, is an important factor when selecting PoIs,
significant amount of research efforts have been invested into distance-oriented
queries such as range queries and k-Nearest Neighbor (kNN) queries [1–3]. How-
ever, in addition to the proximity, the semantics of PoI is often an influential
factor when planning one’s motion and activities [4].

While modeling and querying of the, so-called, semantic or activity tra-
jectories has been a subject of intense research in the past decade [4–6], the
semantic aspect was typically used to augment the traditional searches used
in typical spatial and spatio-temporal queries (range, kNN, etc).

In this work we are taking up a novel variant of the problem – namely,
coupling the proximity constraints (with respect to the the querying user’s
location) with the diversity of the semantic descriptors of the PoI, in a manner
that considers the cost of the travel.

Fig. 1 Running Example of Diverse Path Search

Although traveling cost, i.e., distance/time, is a significant factor to choose
PoIs, people tend to consider incorporating semantically diverse options within
acceptable distance. For instance, a tourist might prefer selecting multiple
attractions which not only are within a given distance range but also exhibit
different types of tourist experiences. To provide an intuition in the realm of
LBS, consider the following:

Example 1 Consider the scenario depicted in Figure 1, illustrating a user at location
Q who is searching for three tourist attractions to visit. The user specifies a maximum
distance, indicated by the dashed circle, that he/she is willing to travel.
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Processing this query would return the answer set T1 = fS1; S2; S3g, con-
sisting of 3 nearest PoIs as the user indicated that k = 3 is a limit of the
number of PoIs. However, one can readily see that in this case, all three
returned PoIs are monuments/statues. If the user would like a more diverse
experience, recommending these three sites would likely not be satisfactory.
To cater to situations described by the above example, recent works intro-
duced the concept of diversity in the spatial queries [7–9]. We note that due to
the hardness of the problem, the works propose approximated solutions (with
slightly different variations of the constraint). As a concrete illustration, in
the context of Example 1, the user may have a preference for the answer set
T2 = fM1; P1; S4g, which includes a statue (S4), a museum (M1) and a park
(P1) – within the desired distance bound.

What motivates this work is the observation that the existing approaches
assume that the user will choose only one of the results, aiming at maximizing
the diversity of the options of the user. However, no guarantee is provided that
there exists a path between all the PoIs that satisfies the range constraints as
path. In this example, it is clear that, while all three PoIs in T2 are within the
spatial range, visiting all three of them relying on the existing road network (cf.
Figure 1) will exceed the distance limitation in terms of total travel. Although
answers like T2 may be useful to provide diverse options such as different types
of restaurants, they do not properly consider the traveling cost between the
PoIs. Moreover, in practice, in addition to the distance budget itself, the user
may have other preferences that could constrain the answer set. For instance,
a user does not mind walking 10km, however he/she is a fan of in-depth tours
of popular venues. Thus, he/she may want to limit the visits to no more than
3 attractions (although there might be more PoIs in the surrounding areas)
because the time plan to be spent in each of them is 1 hour. Another rationale
for explicitly incorporating a limit on is that the user would like to limit the
budget of expenses (e.g., for entrance fee). Hence, in our work, we use the
maximum number of PoIs in the answer to reflect such preferences.

To combine all these considerations, in this paper we introduce a new query
type, called the k-Diverse Path Query (kDPQ). The goal of kDPQ is to find
a path that maximizes diversity of PoIs along it, subject to the constraint that
the length of the whole path is within user-speci�ed limits, and the number of
PoIs is k.

We also consider settings in which the user would like to have a very spe-
cific location as the terminal one for the trip. Such settings would correspond
to scenarios in which the user wants to have subsequent activities at/near a
particular location, e.g., have a meeting with a collaborator in a restaurant,
after the tour. In an extreme case, the scenario would correspond to the user
wanting to be back to his/her hotel, which is a starting location of the trip.
We denote this variant with kT DPQ, to indicate that the terminal point of the
trip is fixed.
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We note that the proposed approaches can be generalized to different
classes of problems in which: (a) there exists a collection of states, each spec-
ified with a set of values from different domains; (b) there exists a limited
set of transitions between certain pairs of states; (c) there is a cost associ-
ated with each transition; and (d) the desired properties of the states along an
“execution path” of a process can be semantically specified. One specific exam-
ple comes from the domain of workflows and Business Process Management
(BPM) domains, where attempts have been made to semantically characterize
the enactments [10, 11]. From a broader perspective, the generalized travel-
ing salesman problem also appears in genomic research [12] when considering
a graph of possible transition among states in which one would like to couple
a constraint on the types of states and the reaction time, with specific initial
conditions/states.

In this work, we focus on the LBS settings and towards processing the
above diverse path queries, we propose two searching algorithms. While one
can always construct a straightforward baseline based on Dijkstra algorithm,
in this work we propose an index structure, called Diversity Aggregated R-tree
(DAR-tree), devised to improve the efficiency of the kDPQ processing. Specifi-
cally, the DAR-tree enables the two algorithms that we propose to navigate the
space of possible paths more efficiently, while maximizing diversity of PoIs. We
also introduce adaptations of the criteria for using DAR-tree structure towards
efficient processing of kT DPQ.

Our experimental evaluation, where real-world road network and PoI data
from OpenStreetMap are used to generate applicable scenarios, demonstrates
that our proposed algorithms can provide highly-diverse paths, while being
efficient in terms of running time. We also provide a discussion, illustrating
how each of our algorithms has advantages in specific scenarios.

In summary, our main contributions are as follows:

• We identify and formalize a novel type of path planning query, kDPQ,
enabling the users to generate a visit of a sequence of PoIs that are within
certain distance bound and provide maximal diversity, as well as its variant
with a fixed terminal, kT DPQ.

• We devise novel data structure and processing algorithms to enable effi-
cient processing of the kDPQ and kT DPQ variants. The DAR-tree augments
the traditional R-tree by embedding aggregated semantic information in its
nodes.

• We conduct experimental evaluations over real-world datasets to demon-
strate the benefits of the proposed methodologies andthe trade-offs between
two complementary solutions.

We note that an earlier version of this work was presented in [13]. The
present article extends the prior publication with the kT DPQ variant, along
with the corresponding experimental results and analysis.

The remainder of this paper is organized as follows. We survey state-
of-the-art methods related to diverse nearest PoI search in Section 2. After
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introducing the necessary background, our proposed novel queries {kDPQ and
kT DPQ { are formally de�ned in Section 3. Section 4 presents our solutions
in detail, including the DAR-tree and query processing algorithm that lever-
age this index structure. In Section 5 we discuss in detail the processing of
kT DPQ variant. The experimental evaluations are presented in Section 6, and
we conclude this work in Section 7.

2 Related Work

Coupling motion and semantics has already been considered in the literature,
bringing about the concepts of semantic and activity trajectories. Both the
modelling aspects [5, 6] and the query processing aspects [4, 14] combining
spatial, temporal and descriptor contexts of the PoIs, along with transition
mode (e.g., walk, drive) have been tackled. What separates the present work
from the aforementioned ones is that we are focusing on constructing a path
that will be limited in its length, be it travel-time or distance along a road
network, and will visit a collection of PoIs with the highest diversity in terms
of their semantic descriptors.

The concept of incorporating diversity into queries answers has its origins in
information retrieval { speci�cally, in similarity search among documents. The
Maximal Marginal Relevance(MMR) model [15] is one of the earliest proposals
to consider diversity to re-rank documents in the answer set, where at each
step, the element with higher marginal relevance is selected. A document has
high marginal relevance if it is both relevant to the query and has minimal
similarity to previously selected documents.

Several approaches have been proposed for coupling spatial and diversity
contexts. Finding the kNNs to a given query point such that the distance
between any two points is greater than a prede�ned minimum diversity was
introduced in [16], and selecting the most diverse set within a prede�ned radius
in Hamming space is addressed in [17]. Ak-similar diversi�cation set which
optimizes a linear function combining the similarity (i.e., closeness) and diver-
sity for a given trade-o� between them has been studied in [18]. Monitoring
the most diverse k-sized set over distributed sets was proposed in [19]. All
these works have in common that their goal is to �nd a k-cardinality subset
of sizek, among a set of candidates PoIs, that maximizes diversity. However,
these works do not consider the constrained travel along road networks, and
thus, cannot return any path that allows to visit the resulting PoIs.

Other recent works that have combined the diversity and spatial contexts
are presented in [7] and [9] in the context of NN queries, tackling the set-
tings of optimizing the weighted sums of the constraints. Our previous work [8]
introduced a k-Diversi�ed Range Query (kDRQ) on road networks, which max-
imizes the semantic diversity of the answer set from spatial range queries on
road network. While this work does consider road networks, it selects a diverse
set within a network range regardless of the length of the path between the
PoIs. The rational�e is to give users merely a set of diverse options, from which
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the user is expected to choose one, however, it is restricted within a path from
a query location to a single PoI. The main di�erence with the present work
is that kDP queries generate a path that connects multiple PoIs that, ensur-
ing high diversity. More distantly related approaches to spatial diversi�cation
include angular diversity [20] { which de�nes the nearest Surrounder Query
to �nd the nearest objects from a query point from di�erent angles; and the
angular similarity { which have been used for diversi�ed kNN problem in [21].

Relying on the Skyline paradigm [22], �nding the set of all optimal solutions
for a given linear combination of two diversity notions, spatial and categori-
cal, is presented in [7]. The categorical diversity is modeled by the di�erence
between categories of data points { e.g., two restaurants are diverse if they are
from di�erent ethnicities. The idea of using keywords, i.e., a �ner granularity in
order to distinguish categories, to �nd diverse kNNs has been explored in [23].
In that work, the keywords are used for �ltering data points, i.e., only points
that contain all query keywords are considered. More recently, the problem
of �nding k shortest trajectories that contain the most relevant keywords to
the query was addressed in [24], where a hybrid index structure was proposed.
Complementary to these works, we use the concept of Latent Dirichlet Allo-
cation in order to consider a more sophisticated notion of diversity based on
the set of keywords that describe each object. To speedup the processing of
kDRQs, we propose an indexing structure which augments the spatial data in
a node with aggregated diversity value for the sub-trees.

We note that the kT DPQ version can be perceived as an extended vari-
ant of the Generalized Traveling Salesman Path(GTSP) [25]. In the original
setting, the query required at least one node from each semantic category.
In [26], a special case of GTSP problem was introduced { �nding the optimal
path with a given set of node constraints { and two heuristics were proposed.
Another variant of GTSP query was recently considered in [27] which, comple-
mentary to this work, was pondering the settings with a numerical preference
of each PoI category, without any pre-established bound on the starting or ter-
minating locations. Preliminary results were presented on solving the variant
over real-world dataset by adopting multiple benchmarks. In this work, the
spatial constraints pertain to the starting and ending/terminating location {
however, what separates it from the above works is that we are focusing on
concomitantly optimizing the diversity of the PoIs.

We close this section with observations regarding two bodies of related
work. Recently, Machine Learning (ML) based approaches have been proposed
for recommending the (next) PoI to visit, incorporating features such as pop-
ularity, preferences, starting time, etc. [28{32]. Some recent works have also
targeted the problem of recommending a sequence of PoIs [33]. However, we
note that, at present, any kind of a ML based approach forkDPQ/ kT DPQ
variants is hindered by the lack of proper training data { for which our work
may generate enabling source. Complementary to this, diversi�cation has been
studied in social sciences { e.g., for variations of economic and racial groups,
and mobility across spatial areas (cf. [34, 35]). However, those applications
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{ while of societal importance (and subject of future work), are outside the
scope of the current problem domain.

3 Background and Problem De�nition

In this section, we introduce the basic terminologies and the settings, after
which we proceed with the formal de�nition of the kDPQ and kT DPQ prob-
lems. We �rst de�ne the problem of �nding the k most-diverse path for
an abstract diversity metric, and then introduce the topic-based diversity
employed in this article.

3.1 Preliminaries
De�nition 1 (Road Network) A Road Network G = ( V; E; W ) is a weighted directed
graph, where V is a set of vertices and each vertexv 2 V is associated with location-
attribute v:L ; E � V � V represents the set of edges between pairs of vertices (vi ; vj )
(vi ; vj 2 V ); W : E 7! R+ is a function which maps each edgee 2 E to a positive
real value representing the cost of traversing e.

Vertices on a road network may contain Points of Interest (PoIs). Each
PoI is associated with two attributes: location (such as latitude and longitude)
and descriptors (such as keywords, categories, and etc.), formally de�ned as
follows:

De�nition 2 (PoI Network) Let G = ( V; E; W ) be a road network. A PoI p is
represented as a pairp = ( L; I ), where p:L 2 f v:L j v 2 V g is the spatial location
of p on the road network, and p:I is the semantic information of p. A PoI Database
P = f p1; :::; pjPj g is a collection of PoIs and for any vertex v 2 V , we let v:P denote
the (possibly empty) set of PoIs located at vertex v. We denote the road network
enriched with the PoI information as G = ( V; E; W; P), and call it a PoI network.

We note that in practice, a particular PoI p may not be directly located at
a vertex of the road network. In such a case, we apply map-matching to project
the PoI to the nearest point on an edge of the road network [36]. The projected
point becomes a new (virtual) vertex of the network that corresponds to the
p:L.

The process of constructing a PoI network from a given road network graph
G and a set of PoIsP is formalized in Algorithm 1. Note that we leverage an
R-tree [1] to store the road network (Lines 3 � 6) to e�ciently retrieve the
nearest neighbor edge to a PoI (Line 11). The update in Line 13 adds a new
vertex to the network, and replaces the corresponding edge (i.e.,nearest edge)
with two new edges connecting the new (virtual location) vertex to the vertices
of nearest edge, and replicating the original weight of the nearest edge to
both new edges.

To illustrate the concepts, we provide another small-scale example in
Figure 2 { slightly more focused on the terms and their relationship than the
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Algorithm 1 PoI Network Construction
Input: Road Network G = ( V; E; W), PoI Database P
Output: PoI Network G

1: Copy G as initial G with v:S = ; for each v in V
2: tree  R-tree()
3: for each e in E do
4: rect  rectangle whose diagonal ise
5: tree:insert(rect)
6: end for
7: for each p in P do
8: if p:L = v:L where v 2 G then
9: v:P:add(p)

10: else
11: nearest edge tree:nearest neighbor(p:L)
12: v:L  Project p onto nearest edgewhich minimizes distance top:L
13: Update G with new vertex (v:L; f pg)
14: end if
15: end for
16: return G

intuitive motivation in Figure 1. Speci�cally, we present a PoI network, hav-
ing six PoIs P = f p1; p2; p3; p4; p5; p6g (shown as purple circles) and a road
network having jV j = 7 vertices (shown as green rectangles), several bidirec-
tional edgesE connecting vertices (shown as solid black lines) and a weight
function W mapping edges to annotated weights. PoIsp3 and p5 are trivially
mapped to vertices at the same location. Using Algorithm 1, three new ver-
tices { v8; v9; v10 { are added into the PoI network, as well as the related edges
and the updated corresponding weights. Note that Algorithm 1 will also map
p6 to v8, thus yielding v8:P = f p1; p6g.

3.2 The k-Most Diverse Path Query
De�nition 3 (Semantic Path) Let G = ( V; E; W; P) be a PoI network. A semantic
path sp = ( sp1; :::; spj spj ) is a sequence of adjacent vertices inG, i.e., 8i (1 � i �
jspj) : spi 2 V and 8i (1 � i < jspj) : ( spi ; spi +1 ) 2 E . The cost of a given path sp

is de�ned as sum of edges weightsp:cost :=
P j spj� 1

i =1 W (spi ; spi +1 ). The attribute

collection of a given path sp is de�ned as sp:collection =
S j spj

i =1 spi :P { i.e., the union
of all the PoIs contained in the vertices along sp (ones for which spi :P 6= ; ).

In Figure 2, sp = ( v8; v1; v2; v9; v5; v10) is a semantic path having cost
sp:cost= 9 + 10 + 8 + 8 + 10 = 45 that includes the set of PoIs sp:collection =
f p1; p6; p2; p4g.

De�nition 4 (Range Path Search Query) Let G = ( V; E; W; P) be a PoI network
and Q 2 V be a query location. Given a positive value " 2 R+ , a network range path
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Attractions Types Descriptors
p1 Museum f Historical, Cultural, Art g
p2 Park f Fountain, Forest, Playground g
p3 Aquarium f Seal, Fish, Seag
p4 Park f Green, Fish, Monumentg
p5 Zoo f Turtle, Tiger, Safari g
p6 Museum f Literature, Art, Painting g

Fig. 2 Example of PoI Network

search query RP S(G; Q; " ) returns all semantic paths starting at Q having a cost no
greater than " Formally:

RPS(G; Q; " ) = f sp j sp1 = Q ^ sp:cost � "g

We note that the assumption that Q 2 V comes without loss of generality,
as we can project any query location to a (potentially new) network vertex
using Algorithm 1.

The concepts introduced so far are illustrated in Figure 2, showing the
query point Q (red cross) located atv2. Given a distance range" = 30, answers
to RPS include (Q; v1; v8; v1), (Q; v9; v5; v10), (Q; v3; v4; v7; v6). We note that
De�nition 3 does not require a path to be simple, i.e., it allows a path to have
cycles and visit the same vertex more than once. This is necessary in order to
enable a path to collect PoIs located in dead ends { which is, nodes of degree
1 { and still continue collecting additional PoIs.

In addition to limiting the distance for a user to travel on a path, we
further assume that a user may have other kinds of constraints (e.g., a limited
spending budget, or limited stay-time) which, in turn, may impose a limit on
the maximum number of PoIs along a semantic path and we denoted it byk in
this work. For a set of PoIs collected by a path, the following de�nition �nds
the most diverse subset of PoIs of cardinalityk:

De�nition 5 (k-Diverse Subset of Semantic Path) Let sp be a semantic path, and
div : P 7! R+

0 be a function that maps a set of PoIs to a non-negative diversity score.
The k-diverse subset of sp, kDSdiv (sp; k), is de�ned as the subset of sp:collection
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with cardinality at most k, maximizing the diversity score, i.e.,

kDSdiv (sp; k) = arg max
P � sp:collection; jP j� k

div (P )

The speci�cation of a diversity function div(P) that maps a set of PoIs P
to a diversity score is left abstract in De�nition 5, and multiple de�nitions of
diversity have been used in the literature [7, 8]. In this work, we employ the
topic-based probabilistic diversity proposed in [8], which is reviewed in detail
in Section 3.3.

Example 2 Returning to the scenario in Figure 2, consider the semantic path
(v2; v3; v2; v9; v5; v10), which collects the set of three PoIs f p2; p3; p4g. Assume that
a user only has time/budget to visit two PoIs, thus setting k = 2. In this case, we see
that both PoIs p2 and p4 are a park, having similar textual descriptors. Intuitively,
to maximize diversity, p3 should be chosen as the only non-park PoI, and it should
be chosen together with p2, as p4 shares keyword similarity (i.e., Fish) with p3.

Given a measure of diversity of a semantic path in De�nition 5, we can now
proceed to de�ne our proposedk diverse path query as �nding the semantic
path that starts at a speci�ed query location and maximizes the diversity of
collected paths subject to a maximum length of the path and a maximum
number of PoIs to be collected. This query is formally de�ned as follows.

De�nition 6 (k-Diverse Path Query) Let G = ( V; E; W; P) be a PoI network and
Q 2 V be a query location. Furthermore, let div : P 7! R+

0 be a function that maps
a set of PoIs to a non-negative diversity score, let k be a positive integer, and let
" 2 R+ be a cost constraint. Then, a k-diverse path query (kDP Q ) is de�ned as

kDP Q (G; Q; div; "; k ) = arg max
sp2 RP S (G;Q;" )

div (kDSdiv (sp; k))

where RP S(G; Q; " ) is the set of all semantic paths starting at Q having a cost no
greater than " as de�ned in De�nition 4, and kDSdiv (sp; k) returns the k-subset of
PoIs among all PoIs collected by path sp that maximizes the diversity function div
as de�ned in De�nition 5.

Example 3 Given the PoI network G in Figure 2, let " = 35 and k = 2, two possible
paths could be sp1 = ( Q; v2; v9; v5; v10) with sp1:collection = f p2; p4g and sp2 = ( Q;
v2; v3; v4; v7; v6; v10) with sp2:collection = f p3; p5; p4g. Since both p2 and p4 are
parks and most textual descriptors are semantically similar, a k-diverse path query
returns path kDP Q (G; Q; div; 35; 2) = sp2 and recommends to visit PoIs p3 and p4
on this path.

As mentioned, in certain scenarios users may want to impose an addi-
tional constraint { �nishing (i.e., terminating) their trips at a speci�c terminal,
denoted T. To cater to such settings, we have the following:
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De�nition 7 (k-Diverse Path Query With Fixed Terminal ) Let G = ( V; E; W; P)
be a PoI network, Q 2 V be a query location and T 2 V be a vertex corresponding
to the desired end of trip location. As before, let div : P 7! R+

0 be a function that
maps a set of PoIs to a non-negative diversity score, let k be a positive integer, and
let " 2 R+ be a cost constraint. Then, a k-diverse path query with �xed terminal
(kT DP Q ) is de�ned as

kT DP Q (G; Q; T; div; "; k ) = arg max
sp2 RP S (G;Q;T;" )

div (kDSdiv (sp; k))

where RP S(G; Q; T; " ) is the subset of RP S(G; Q; " ), corresponding to all semantic
paths starting at Q, terminating at T , and having a cost no greater than " (cf. as
De�nition 4). Similarly to De�nition 6, kDSdiv (sp; k) returns the k-subset of PoIs
among all PoIs collected by path sp that maximizes the diversity function div (cf.
De�nition 5).

We observe that for any strictly monotonic diversity function div (cf.
Section 3.3), the following hardness result holds:

Lemma 1 The problem of �nding the most diverse path kDP Q (G; Q; div; "; k ) is
NP-hard.

Proof Let tsp be a solution to the traveling salesman problem (TSP) on an arbitrary
graph G starting at an arbitrary vertex Q, that is, the shortest path that collects
all PoIs. Let tsp:cost denote the cost of this path. Let div be any strictly monotonic
diversity function, that is, adding additional PoIs to a set will increase the diversity of
the set. Sincediv is strictly monotonic, the set P , which contains all PoIs, maximizes
div . Then, by De�nition 6, kDP Q (G; Q; div; tsp:cost; 1 ) = tsp. This is evident, as
a kDPQ query starting at Q, having a range of " = tsp:cost, will return the most
diverse path (collecting all PoIs due to a strictly monotonic diversity function) having
a length of at most tsp:cost. By de�nition, this path exists and is the solution to the
TSP on G starting at Q. Thus, any instance of TSP can be written as an instance of
kDPQ, implying that answering kDPQ queries is at least as hard as TSP, which is
known to be NP-hard [37]. �

Lemma 2 The problem of �nding the most diverse path kT DP Q (G; Q; T; div; "; k )
is NP-hard.

Proof Analogously to the proof of Lemma 1 we let tsp be the solution to the
traveling salesman problem (TSP) on an arbitrary graph G starting at an arbi-
trary vertex Q and we additionally let T 0 be the last vertex of tsp. Then we have
kT DP Q (G; Q; T 0; div; "; k ) = tsp. Again, this shows that any instance of TSP can be
reduced to an instance of kT DP Q . �

Due to the complexity of kDPQ and kT DPQ, we resort to heuristics to
�nd (approximate) solutions that return high, but not necessarily optimal,
diversity. Next, we briey explain the diversity function div that we employ.
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3.3 Topic-Based Diversity

In this work, we leverage the topic-based diversity proposed in [8] which
extracts K latent topics from textual context of each PoI, where K is a user-
speci�ed parameter. Based on textual descriptorpi :I of a PoI pi 2 P, pi is
mapped to a topic distribution � i that maps each topic to the probability � i;j

that pi covers the topic 1� j � K . Then, the diversity of a set P of PoIs is
de�ned as the expected number of topics that is covered by any PoI inP.

Based on the attached descriptive items, the semantic description of each
PoI pi is illustrated by a vector of probability (topic) distribution � i whose
length is the number of latent topics K . � i;j (1 � j � n) represents the
probability of pi belonging to topic j . For a set of PoIs P = f p1; :::; pjP j g, we
de�ne a vector P robDiv (P) that stores, for each topic j , the probability that
it is covered by P as

ProbDiv (P) j := 1 �
Y

pi 2 P

(1 � � i;j )

which is then aggregated into a diversity score via expected number of topics
covered:

div(P) :=
KX

j =1

ProbDiv (P) j

.
Intuitively, the probability 1 � � i;j is the probability that PoI pi does not

cover topic j . Exploiting that PoIs are stochastically independent,
Q

pi 2 P (1 �
� i;j ) is the probability that none of the PoIs in P covers topic j . We de�ne
P robDiv (P) j as the counter-probability, i.e., the probability of the com-
plementary event that at least one PoI in P covers topic j . Finally, these
probabilities are aggregated into the expected number of topics covered byP
via div(P).

Example 4 Let P = f p1; p2; p3g, and each pi allocated a topic distribution having
K = 3 topics, e.g, � 1 = (0 :1; 0:0; 0:9); � 2 = (0 :4; 0:3; 0:3); � 3 = (1 :0; 0:0; 0:0), respec-
tively. One can observe that p1 is very likely to cover the third category and p3 is
guaranteed to belong to the �rst category, while p2 obtains a high uncertainty since its
distribution among di�erent categories is close to uniform. To compute P robDiv (P )
using above equations, we getP robDiv (P )1 = 1 � (1� 0:1) � (1� 0:4) � (1� 1:0) = 1 :0
since p3 is certain to cover the �rst category; P robDiv (P )2 = 1 � (1 � 0:0) � (1 �
0:3) � (1 � 0:0) = 0 :3 indicating a 30% likelihood that P can cover the second cate-
gory; and P robDiv (P )3 = 1 � (1 � 0:9) � (1 � 0:3) � (1 � 0:0) = 0 :93 showing a high
probability that the third category is covered due to the probability distribution of
p1. In sum, div (P ) = 1 :0 + 0 :3 + 0 :93 = 2:23 implies that an expected 2:23 topics are
covered by P .
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4 E�cient Processing of kDPQ

To e�ciently answer kDPQ we adopt the informed search [38] approach which,
in general, can be considered as a greedy algorithm, whereby a vertex is
selected for exploration based on the priority from an evaluation function. The
evaluation function for solving kDPQ is constructed as the estimated gain of
probabilistic diversity, thus the vertex with the greatest evaluation would be
explored �rst. The quality of the evaluation function is critical for the searching
procedure.

We �rstly introduce the heuristic function, which is an important compo-
nent of the evaluation along with the proposed supporting index structure:
Diversity Aggregated R-Tree, to e�ciently compute the result from a heuristic
function. Subsequently, the informed search algorithm is presented.

4.1 Heuristic and Evaluation Function

For a PoI network G = ( V; E; W; P), vertex v 2 V , and value " � 0, let P[v; "]
denote the set of all PoIs inP having a network distance fromv of at most " .
Furthermore, let PE [v; " ] denote the set of all PoIs inP having Euclidean dis-
tance from v of at most " . To conservatively bound the category-wise diversity
vector P robDiv (P[v; "]), we propose the following heuristic function:

h(v; ") := P robDiv (PE [v; " ]);

where PE [v; " ] = f p j kv:L; p:L k2 � "g (1)

Note that the Euclidean distance, which is used in the heuristic function, is
always less than or equal to the road-network distance { thusP[v; "] � PE [v; " ]
holds. We can leverage this relation to obtain an upper bound of the diversity
div(P[v; "]) using the following lemma:

Lemma 3 For any topic 1 � j � K it holds that:

div (PE [v; " ]) � div (P [v; " ])

Proof Because of 0 � � i;j � 1 for any PoI pi and category j , we also have
0 � 1 � � i;j � 1. Due to P [v; " ] � PE [v; " ], it holds that

Q
pi 2 PE [v;" ](1 � � i;j ) �

Q
pi 2 P [v;" ](1 � � i;j ) and thus 1 �

Q
pi 2 PE [v;" ](1 � � i;j ) � 1 �

Q
pi 2 P [v;" ](1 � � i;j ).

Summarizing over all categories j , this implies that
P K

i =1 1�
Q

pi 2 PE [v;" ](1 � � i;j ) �
P K

i =1 1 �
Q

pi 2 P [v;" ](1 � � i;j ) i.e., div (PE [v; " ]) � div (P [v; " ]). �

According to Lemma 3, the Euclidean forward estimation using all
PoIs PE [v; " ] in the Euclidean range allows to derive an upper bound of
P robDiv (P[v; "]) without having to consider the network topology of the entire
graph G.
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Algorithm 2 Swap Algorithm
Input: Set of PoIsP, Integer k
Output: k� Diverse SubsetP �

1: P �  ;
2: for each p 2 P do
3: if jP � j < k then
4: P �  P � [ p
5: else
6: C  P � [ p
7: p�  arg maxp02 C div(C n p0)
8: P �  C n p�

9: end if
10: end for
11: return P �

4.2 Informed Search

Starting at Q, the idea of our proposed algorithm is to iteratively expand paths
that yield the highest potential diversity using the heuristic of Equation 1. In
a nutshell, if we reach a vertexv on a path of cost � , then we have at most a
distance of " � � left to explore from v. If the path leading to v has already
collected the set of PoIsres, then the maximum diversity of exploring v can
be upper-bounded by computing the maximumk-diversity of any k-subset of
the set res

S
PE (v; " � � ) { that is, via extending res by all PoIs still reachable

from v using Euclidean distance. Our algorithm greedily processes vertices
using a priority queue sorted by this upper bound. Once the currently most
diverse result exceeds the diversity of the largest unexplored upper bound, we
can terminate computation.

Formally, let res � V be the set of vertices explored by a path and let� be
the cost of this path. For any adjacent vertex to extend the path, we evaluate
the following function:

f (res; v; " � �; k )

= div(Swap(res
[

ProbDiv (PE (v; " � � ) n res); k)) (2)

The rationale of f (res; v; " � �; k ) is to consider the set of all PoIsPE (v; " �
� ) n res reachable from v at a Euclidean distance of " � � , except the PoIs
in res which are already collected. Then, the result of the heuristic function
P robDiv (PE (v; " � � ) nres) is treated as the topic distribution of a single PoI.
Because of the limit on cardinality, to estimate the potential gain of following
a speci�c direction to extend a semantic path, we employ theSwap Algorithm,
(cf. Algorithm 2, proposed in [18]) to heuristically �nd k subset obtaining
greatest diversity among its k-diverse subsetres and PE (v; " � � ) n res. We
note that Lemma 3 ensures that the diversity of PoIs inside the Euclidean
range is no less than the diversity of the PoIs in the network range, thus
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Fig. 3 Example of Diversity Aggregated R-Tree

that f (res; v; " � �; k ) provides an upper bound of the diversity obtainable by
extending an existing path by nodev. Our algorithm will exploit the evaluation
function f (res; v; " � �; k ) to direct the searching process to the node having
the highest upper bound diversity.

4.3 Diversity Aggregated R-Tree

The main point of utilizing the Euclidean distance as a heuristic function is
to be able to leverage an R-Tree [39] to e�ciently obtain the set PE (v; ") of
PoIs within a Euclidean range around nodev. Since the Euclidean distance is
a lower bound of the network distance, it allows us to prune any PoI (or R-
Tree node) having a Euclidean distance already greater than" while avoiding
expensive network exploration to obtain the set P(v; ") using, for example,
Dijkstra's algorithm. Although shortest path algorithms can retrieve all PoIs
whose network distance is within a certain budget, the execution time is pro-
hibitive (e.g., the complexity for Dijkstra algorithm is O(jE j + jV j log jV j)) and
we have to run it once whenever we want to explore an vertex in graph. On the
opposite, we leverage R-Tree and retrievePE as a candidate set in Euclidean
space. The worst-case complexity of searching in R-Tree is linear to the num-
ber of nodes, which in our case is the number of PoIs. In addition, the number
of PoIs is always (much) smaller than the number of vertices in the road net-
work. This, along with the linear complexity, enables speeding up the query
processing, especially in comparison with Dijkstra-based exploration.

To help our search for diverse paths, we introduce aDiversity Aggre-
gated R-Tree (DAR-Tree) to accelerate the computation of heuristic function
div(PE [v; " ]). DAR-Tree is a variant of aggregated R-Tree(aR-Tree) [40], storing
the information related to probabilistic diversity of each Minimum Bounding
Rectangle (MBR) in both leaf and inner nodes.
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Figure 3 presents a example ofDAR-Tree with 12 PoIs. Each leaf node stores
a PoI and its corresponding topic distribution. Every non-leaf node contains:

1. The pointer(s) to the child node(s) and the coordinates ofMBR ;
2. The diversity-related information, which is a vector representing the prob-

ability of each category not being covered of all its children, i.e.,� m;j =Q
pi 2 m (1 � � i;j ), where m is an MBR and 1 � j � K .

Furthermore, each MBR m memorizes the setP of PoIs inside m, e.g.,
P1 = f p1; p2; p3g and P3 = f p7; p8; p9g.

Since theDAR-Tree inherits the structure of an aR-Tree [40], we omit details
on construction and maintenance ofDAR-Tree { however, for reproducibility,
we do provide the source code (cf. Section 6). The bene�ts of theDAR-Tree in
terms of speeding up the computation of the heuristic function, are illustrated
by Algorithm 3. Broadly speaking, instead of always recursively iterating all
the way down to the leaf node, we can terminate the search if an MBR of some
non-leaf node has already been fully contained by the searching region. For a
set of approximated PoIs, Line 4 and Line 6 calculate the probability of each
category being uncovered, thus Line 20 returns the complementary probability.

Algorithm 3 DAR-Tree Range Query
Input: PoI network G = ( V; E; W; P), DAR-Tree R, Vertex v 2 V ,

Range" , k-diverse subsetres
Output: Heuristic scoreh val

1: h val  (1; :::; 1) . jh valj = the number of categories
2: function range-search (region, child , res)
3: if child is a leaf andPchild =2 res then
4: h val  h val

J
(1 � � child ) .

J
is entrywise product

5: else if region:contains(MBR child ) then
6: h val  h val

J
� child

7: dup  res
T

Pchild

8: if dup 6= ; then
9: h val  h val �

Q
pi 2 dup (1 � � i ) . � is entrywise division

10: end if
11: else
12: for each gchild of child do
13: if region:intersects(MBR gchild ) then
14: range-search (region, gchild, res)
15: end if
16: end for
17: end if
18: end function
19: range-search (circle(v; "), R :root, res)
20: return (1; :::; 1) � h val . Entrywise subtraction
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4.4 E�cient kDPQ Processing { Greedy Best-First
Search

Algorithm 4 and Algorithm 5 are two searching strategies that we propose,
utilizing the heuristic function (Equation 1) and DAR-Tree. The main idea is
to greedily explore the network, while two di�erent variations are introduced
to balance the e�ciency and diversity.

Speci�cally, Algorithm 4 prunes the search space by only considering simple
paths, i.e., paths that do not visit the same node twice. While this constraint
yields gains in e�ciency, it must be noted that the most diverse path may
very well be non-simple, for example if the path visits a PoI located in a dead
end (a vertex of degree one). Such cases may occur in practice { for example
the Field Museum in Chicago is located on lake shore. Thus, when continuing
the search for other PoIs, the intersection immediately leading to the Field
Museum will inevitably be visited again (as a vertex of a road network). If
simple paths are imposed, this search algorithm can only visit such a PoI if
the path ends there. Algorithm 5, in turn, allows to re-visit the vertices but
does not allow visiting directed edges more than once.

4.4.1 Vertex-constrained Searching Strategy (VSS- kDPQ)

Algorithm 4 remembers all the explored vertices to avoid exploring the network
redundantly. That is to say, newly generated vertices that match previously
explored ones would be discarded so that each vertex can be visited at most
once.

At the beginning, the priority queue that contains all vertices available for
exploration (Line 2) is initialized, and a set for remembering every expanded
vertex (Line 4). For each vertex in the priority queue, we use a data structure
composed of �ve components:id { the unique identi�cation of the vertex;
priority { the potential/approximate diversity measured by evaluation function
(Equation 1) if choosing this vertex to explore;dist { the road-network distance
from query point Q to this vertex, res { the k-diversi�ed results among the
path so far, path { the path from query point Q to this vertex.

Our goal is to �nd the path with greatest diversity, thus an intuitive way
to expand �rst is the vertex with the highest value from evaluation function
h(v; ") (Equation 1). The priority queue is sorted by the priority of each ver-
tices in descending order. When a vertex is popped out for expansion, stop
computation if the highest diversity result found so far exceeds the upper
bound diversity in the priority queue (Line 8). If a better solution might still
exist, the searching procedure will continue and add the adjacent vertices of
the expanded one into priority queue. As mentioned, the explored vertices
(recorded in explored set) are not inserted into priority queue again, to avoid
duplication. Line 22 is executed when better path is discovered to a vertex
currently in the queue pq.

However, while the searching procedure by Algorithm 4 is e�cient, as each
vertex must be visited at most once { the diversity of the result may be low,
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Algorithm 4 Vertex Variant of kDPQ Path Searching Strategy
Input: PoI network G = ( V; E; W; P), Query point Q 2 G, Integer k,

Range"
Output: Semantic path sp

1: sp; max div  None, � 1
2: pq  Max-Heap() . Each elemente in pq has 5 components {e:id,

e:priority , e:dist, e:res, e:path
3: pq.Insert(Q; 0; 0; Q:P; [Q])
4: explored  ;
5: while pq 6= ; do
6: v; prior; d; res; path  pq.Pop()
7: div score  div(res)
8: if prior � max div then
9: return sp

10: else if div score > max div then
11: sp; max div  path; div score
12: end if
13: explored.Add(v)
14: for each adj v adjacent to v do
15: adj d  d + W (v; adj v)
16: if adj d � " then
17: adj res  Swap(res

S
adj v:P; k)

18: adj prior  f (res; adj v; " � adj d; k)
19: adj path  path:Append(adj v)
20: if adj v is not in explored or pq then
21: pq:Insert(adj v; adj prior; adj d; adj res; adj path)
22: else if adj v is in pq with lower Priority then
23: replace that pq element with updated adj v
24: end if
25: end if
26: end for
27: end while
28: return sp

especially in sparse network where an optimal path may need to backtrack to
previously visited vertices.

4.4.2 Edge-constrained Searching Strategy (ESS- kDPQ)

Algorithm 5 is proposed to prioritize diversity rather than e�ciency. To achieve
that, instead of recording the expanded vertex globally, we remember the
explored directed edges for each path individually. To enforce that capability,
a new component {explored set { is added for each vertex in priority queue,
and a test (Line 13) takes place to avoid visiting an directed edge twice. We
note that the assumption of visiting each directed edge at most once does not
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Algorithm 5 Edge variant of kDPQ Path Searching Strategy
Input: PoI network G = ( V; E; W; P), Query point Q 2 G, Integer k,

Range"
Output: Semantic path sp

1: sp; max div  None, � 1
2: pq  Max-Heap() . Each elemente in pq has 6 components {e:id,

e:priority , e:dist, e:res, e:path, e:explored
3: pq.Insert(Q; 0; 0; Q:P; [Q]; ; )
4: while pq 6= ; do
5: v; prior; d; res; path; ex  pq.Pop()
6: div score  div(res)
7: if prior � max div then
8: return sp
9: else if div score > max div then

10: sp; max div  path; div score
11: end if
12: for each adj v adjacent to v do
13: if (v; adj v) 2 ex then Skip end if
14: adj d  d + W (v; adj v)
15: if adj d � " then
16: adj res  Swap(res

S
adj v:P; k)

17: adj prior  f (res; adj v; " � adj d; k)
18: adj path  path:Append(adj v)
19: adj ex  ex:Add(v; adj v)
20: if adj v is not in pq then
21: pq:Insert(adj v; adj prior; adj d; adj res; adj path; adj ex)
22: else if adj v is in pq with lower Priority then
23: replace that pq element with updated adj v
24: end if
25: end if
26: end for
27: end while
28: return sp

exclude the optimal solution from the search space, as the cost-minimizing path
between a set of PoIs is a Hamilton cycle, which does not visit any directed
edge more than once [41, 42]. However, Algorithm 5 is not guaranteed to �nd
this optimal path. While it eventually explores all possible paths, and thus the
optimal path, the greedy Swap algorithm (Algorithm 2) may discard a PoI
that is part of the optimal path.

4.4.3 Analysis

In both algorithms, the searching procedure runs until either termination con-
dition is satis�ed: (1) all the paths have been explored, or (2) no more path with
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greater diversity exists. For Algorithm 4, we can guarantee that all paths have
been explored after at mostjV j iterations { each issuing a"-range query at a
vertex v for the informed search forward estimation. Assuming that" is small,
and assume that anR-Tree can support range queries on two-dimensional data
in O(log jV j) in the average case [43], this algorithm has a run-time complexity
of O(jV j � log jV j).

For Algorithm 5, we can not guarantee a polynomial run-time. This algo-
rithm explores the set of all possible simple paths, which is exponential in the
range " . In the worst-case, where the network is a single clique connecting
all nodes at the same cost, the early termination criterion using Equation 1
cannot hold, such that all paths must be explored. Despite the exponential
worst-case complexity, our experiments show that this algorithm terminates
early in real-world settings.

5 Terminal Constraint ( kT DPQ)

We now discuss in detail the processing of thekT DPQ variant.

Fig. 4 Distance pruning with ellipse

As mentioned, we assume that in addition to the initial location Q, we now
have a targeted terminal location T. The main observation is that now the
(calculation of the) lower distance bound changes. Namely, instead of consid-
ering only PoIs which are inside the disk centered atQ and with radius " {
now we have an ellipseEkT DPQ with:

1. Focal points at Q and T;
2. Major axis a = "=2

The reason for the value of the major axisa is that, as is well known
from the de�nition of an ellipse as a locus of points, the sum of distances
d(Q; P) + d(T; P) � 2a for every point in the interior or along the boundary
of the ellipse.

Figure 4 illustrates the basic properties and their use in the processing of
K T DPQ. As shown, the PoI P1, even if it yields a good semantic diversity,
cannot be incorporated as part of the path, since the it is outside of the ellipse
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EkT DPQ . In contrast, the PoI P2 is in its interior { hence, it is feasible to
incorporate it in the path, and still have a su�cient budget to travel to T.
What is also shown in Figure 4 is that starting at P2, the pruning can be
recursively repeated, except now we have another ellipse bounding the feasible
PoIs on the sequence fromP2 towards T. Namely, travelling from Q to P2 has
already \consumed" d(Q; P2) of the overall " . Thus, the distance budget from
P2 towards T is "0 = " � d(Q; P2). This de�nes a new value for the major axis
of the subsequent ellipsea0 = "0=2, and the focal points are nowP2 and T.

In general, the equation of an ellipse [44] which is centered at a point
(xc; yc) with major axis a and minor axis b, when the axes are rotated for an
angle � with respect to the main coordinate axes is speci�ed as:

[(x � xc) cos� + ( y � yc) sin � ]2

a2 +
[(x � xc) sin � + ( y � yc) cos� ]2

b2 = 1 (3)

To determine the parameters in Equation 3, we rely on the known (values
of the) arguments from the kT DPQ, which include the location of the starting
point Q, terminal point T, and the distance budget" . We have the following:

xC = ( xQ + xT )=2; yC = ( yQ + yT )=2

c =
q

(xQ � xT )2 + ( yQ � yT )2)=2

a = "=2; b =
p

a2 � c2

(4)

One last parameter to determine is the angle� . Towards that, let s denote
the slope of the line betweenQ and T (i.e., s = ( yT � yQ )=(xT � xQ )). Then,
� is simply arctan(s).

The main impact of the �xed terminal point is, in a sense, in the exibility
of the (execution of) Algorithm 2 { more speci�cally, in the (boundary of the)
available PoIs and the value of� in Equation 2. Speci�cally, before conducting
the \if { else" test (Lines 3 � 9) in Algorithm 2, we need properly update the
leftover budget "0, and set the next focal point (note that one focal point is
always �xed to be the terminal PoI T).

The way this observation is translated more explicitly in the processing
algorithms (cf. Section 4) is that instead of simpleif test whether adj d � "
(Line 16 in Algorithm 4 and Line 15 in Algorithm 5), we need to validate if the
candidate vertex is actually inside the ellipse with foci in the starting point
and terminal, and with major axis equal to the half of distance budget.

We now turn the attention to the changes regarding the use ofDAR-Tree
for processingkT DPQ. Its creation (as part of pre-processing) is not a�ected {
what is changed is theMBR of the range query (cf. Algorithm 3). Speci�cally,
what we need now is an axes-parallelMBR for EkT DPQ . Figure 5 shows the
corresponding modi�cation of the top-portion of Figure 3 from Section 4.3,
which illustrates the ellipse EkT DPQ with the foci Q and T and its correspond-
ing axes-parallelMBR (dashed purple edges). The construction of that MBR
is based on calculating the horizontal and vertical tangents (i.e., the extremal
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